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Abstract

The dynamic behavior of two adjacent single-degree-of-freedom structures connected with a friction damper is

investigated under harmonic ground acceleration. The governing differential equations of motion of the coupled system

are derived and solved for analytical harmonic response during the non-slip and slip motion in friction damper. The

response of the coupled system under harmonic excitation is found to be periodic occurring in three different modes of

vibration (i.e. stick–stick, stick–slip and slip–slip modes). The closed-form expressions in terms of system parameters and

excitation were derived for necessary conditions to initiate the stick–stick and slip–slip modes. A parametric study is also

conducted to study the influence of important system parameters on the response behavior of damper connected structures.

The important parameters included are structure damping ratios, frequency ratio, mass ratio and damper slip force. It was

observed that there exists an optimum slip force in the damper for which the peak displacement of a structure attains the

minimum value. The friction damper with optimum slip force significantly reduces the dynamic response of the coupled

structures. Finally, the influence of important parameters on the maximum displacement of friction damper is also

investigated for its effective design in coupling the adjacent structures.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Structural vibration control, as an advanced technology in engineering, consists of implementing energy
dissipation devices or control systems into structures to reduce excessive structural vibration, enhance human
comfort and prevent catastrophic structural failure due to strong winds and earthquakes, among other inputs.
Structural control technology can also be used for retrofitting of the historical structures, especially against earth-
quakes. The common sense approach to vibration control of structures consists of adding damping, either passively
or actively. The damping dissipates some of the vibration energy of a structure by either transforming it to heat or
transferring it directly to any connected structure or mass damper. The most common ways of adding damping to
structures are by utilizing viscoelastic material as well as dashpots, and appending the structures with control
devices. Effective damping can result by properly treating the structure, which is not damped adequately with visco-
elastic materials. In addition, viscous dampers, tuned mass dampers (dynamic absorbers), friction dampers, shunted
piezoceramics dampers, and magnetic dampers are other mechanisms that are used for passive vibration control [1].
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Among the various control techniques, the coupling of two adjacent structures with suitable mechanisms
can be preferred over the others (when possible). The main reason is that the installation of such devices does
not require additional space and the free space available between two adjacent structures can be effectively
utilized for placing the control devices. Such types of arrangement are also helpful in reducing the mutual
pounding of structures occurred in the past major seismic events such as 1985 Mexico City and 1989 Loma
Prieta earthquakes. Westermo [2] investigated the effectiveness of hinged links for connecting two neighboring
floors of buildings to prevent mutual pounding.

The hinged link alters the dynamic characteristics of the connected structures and reduces the chances of
pounding phenomenon. Luco and Barros [3] investigated the optimal values for the distribution of viscous
dampers interconnecting two adjacent structures of different heights. It was observed that under certain
conditions apparent high damping ratios could be achieved by the dampers in various modes of lightly
damped structures. Zhang and Xu [4] studied the effectiveness of fluid dampers connecting multistory
buildings under earthquake excitation. Zhu and Iemura [5] examined the dynamic characteristics of two
single-degree-freedom systems coupled with a viscoelastic damper under stationary white-noise base
excitation. Ni et al. [6] developed a method for analyzing the random seismic response of a structural system
consisting of two adjacent buildings interconnected by nonlinear hysteretic damping devices. Although, the
above studies confirm the effectiveness of different passive dampers in reducing the seismic response of
connected structures, however, it will be interesting to study the dynamic behavior of two adjacent structures
connected with friction dampers. The friction dampers were found to be very effective for earthquake resistant
design of structures as well as retrofit of existing constructions [7–10].

In this paper, the dynamic response of two adjacent single story building structures connected with a friction
damper is investigated under harmonic ground excitation. The specific objectives of the study are: (i) to derive
the closed-form solutions for the harmonic response of the coupled system during stick and slip phases in the
friction damper; (ii) to investigate the existence and necessary conditions for three different types of motion of
the coupled system, such as stick–stick, stick–slip and slip–slip; (iii) to ascertain the existence of an optimum
slip force in the friction damper for minimum displacement response of the coupled structures; and (iv) to
examine the effects of important parameters such as damping ratio, mass ratio and slip force on the
performance of the damper (for its effective design).
2. Harmonic response of damper connected system

Consider the two adjacent structures connected with friction damper as shown in Fig. 1(a). The friction
damper provides a practical, economical and effective approach for the design of structures to resist excessive
vibrations. The friction damper has advantages such as simple mechanism, low cost, less maintenance and
powerful energy dissipation capability as compared to other passive dampers. The adjacent structures are
idealized as single-degree-of-freedom systems and referred as Structure-1 and -2. The frictional force mobilized
in the damper has typical Coulomb-friction characteristics. The corresponding mechanical model of the
structures connected with friction damper is shown in Fig. 1(b). Let m1, c1 and k1 be the mass, damping
coefficient and stiffness, respectively of the Structure-1. The natural frequency and damping ratio of the

Structure-1 are o1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p
and x1 ¼ c1=2

ffiffiffiffiffiffiffiffiffiffiffi
k1m1

p
, respectively. The m2, c2, k2, o2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
and x2 ¼

c2=2
ffiffiffiffiffiffiffiffiffiffiffi
k2m2

p
denote the corresponding parameters of Structure-2. The system is subjected to harmonic ground

motion. Depending upon the system parameters and excitation level, the connected structures may vibrate
together without any slip in the friction damper (referred as non-slip mode) or vibrate independently if
frictional force in the damper exceeds the limiting value (i.e. vibration in the slip mode).
2.1. Non-slip mode

During the non-slip mode, both structures vibrate together as a single-degree-of-system under ground
excitation. The governing equation of motion of the combined system is expressed by

mc €xc þ cc _xc þ kcxc ¼ �mca0 sinðotÞ, (1)
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Fig. 1. Adjacent structures connected with a friction damper and its mechanical model: (a) adjacent structures with friction damper;

(b) mechanical model.
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where mc ¼ m1 þm2, cc ¼ c1 þ c2 and kc ¼ k1 þ k2 are the mass, damping coefficient and stiffness of the
combined system, respectively; xc; _xc and €xc are the displacement, velocity and acceleration of the combined
system, respectively; and a0 and o are the amplitude and frequency of the ground acceleration, respectively.

Let xcðt0Þ and _xcðt0Þ denote the displacement and the velocity, respectively, at t ¼ t0, then the general
solution of Eq. (1) is expressed by13

xcðtÞ

_xcðtÞ

" #
¼ Astðt� t0Þ

xcðt0Þ

_xcðt0Þ

" #
þ Bstðt� t0Þ, (2)

AstðtÞ ¼ e�xcoct

xcffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2c

q sin o0ctþ cos o0ct
1

o0c
sino0ct

�
ocffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2c

q sin o0ct �
xcffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2c

q sin o0ctþ cos o0ct

2
666664

3
777775, (3)

BstðtÞ ¼
a0

o2
c

e�xcoct �b xcffiffiffiffiffiffiffiffi
1�x2c
p sin o0ctþ cos o0ct
� �

� ao
o0c

sin o0ct
� �

þa sin otþ b cos ot

e�xcoct bocffiffiffiffiffiffiffiffi
1�x2c
p sin o0ctþ ao xcffiffiffiffiffiffiffiffi

1�x2c
p sin o0ct� cos o0ct
� �� �

þao cos ot� bo sin ot

2
66666664

3
77777775
, (4)

a ¼
1� o2

o2
c

� �
cos ot0 þ 2xc

o
oc

sin ot0

1� o2

o2
c

� �2
þ 2xc

o
oc

� �2 , (5)

b ¼
1� o2

o2
c

� �
sin ot0 � 2xc

o
oc

cos ot0

1� o2

o2
c

� �2
þ 2xc

o
oc

� �2 , (6)
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where oc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kc=mc

p
, xc ¼ cc=2

ffiffiffiffiffiffiffiffiffiffi
kcmc

p
and o0c ¼ oc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2c

q
denote the natural frequency, damping ratio and

damped natural frequency of the combined system, respectively.
It is to be noted that the first term in the right-hand side of Eq. (2) accounts only for the transient response

while the second term includes both the steady-state response and the remaining part of the transient one. It
can be easily verified that Ast(0) ¼ I and Bst(0) ¼ {1 � 1}T for any a and b (where I denotes an identity matrix of
size 2� 2).

The coupled system remains in the non-slip mode until the frictional force in the damper is less than the
limiting frictional force. The frictional force in the damper can be obtained by considering the dynamic
equilibrium of Structure-1 or -2. Thus, the non-slip mode of the damper is valid until the following inequalities
hold good

jm1 €xc þm1a0 sinðotÞ þ c1 _xc þ k1xcjp f s (7a)

or

jm2 €xc þm2a0 sinðotÞ þ c2 _xc þ k2xcjp f s, (7b)

where fs is the limiting force in the friction damper and it is referred as slip force.
2.2. Slip mode

Whenever the force in friction damper attains to the slip force, the system moves into the slip mode. The
condition for initiation of slippage is written as

m1 €x1ðtÞ þm1a0 sinðotÞ þ c1 _x1ðtÞ þ k1x1ðtÞ
�� ��4f s (8a)

or

jm2 €x2ðtÞ þm2a0 sin ðotÞ þ c2 _x2ðtÞ þ k2x2ðtÞj4f s, (8b)

where x1 and x2 are the displacements relative to the ground of Structure-1 and -2, respectively.
The equations of motion of two connected structures in the slip mode are expressed by

m1 €x1 þ c1 _x1 þ k1x1 ¼ �m1a0 sinðotÞ þ f s sgnð _x2 � _x1Þ, (9)

m2 €x2 þ c2 _x2 þ k2x2 ¼ �m2a0 sinðotÞ � f s sgnð _x2 � _x1Þ, (10)

where sgn denotes the signum function.
Let x1ðt

�
0Þ and _x1ðt

�
0Þ denote the displacement and the velocity, respectively, of the Structure-1 at time, t ¼ t�0,

then the general solution of Eq. (9) is given by

x1ðtÞ

_x1ðtÞ

" #
¼ Aslðt� t�0Þ

x1ðt
�
0Þ

_x1ðt
�
0Þ

" #
þ Bslðt� t�0Þ, (11)

Aslðt�Þ ¼ e�x1o1t�

x1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x21

q sin o01t
� þ coso01t

� 1

o01
sin o01t

�

�
o1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x21

q sin o01t
� �

x1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x21

q sin o01t
� þ cos o01t

�

2
666664

3
777775, (12)
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Bslðt�Þ ¼
a0

o2
1

e�x1o1t� �ðb0 þ dÞ
x1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x21

q sin o01t
� þ cos o01t

�

2
64

3
75� a0o

o01
sin o01t

�

8><
>:

9>=
>;

þa0 sin ot� þ b0 cos ot� þ d

e�x1o1t�
o1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x21

q sin o01t
�ðb0 þ dÞ þ a0o

x1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x21

q sin o01t
� � cos o01t

�

2
64

3
75

8><
>:

9>=
>;

þa0o cos ot� � b0o sin ot�

2
666666666666664

3
777777777777775

, (13)

a0 ¼
1� o2

o2
1

� �
cos ot�0 þ 2x1 o

o1
sin ot�0

1� o2

o2
1

� �2
þ 2x1 o

o1

� �2 , (14)

b0 ¼
1� o2

o2
1

� �
sin ot�0 � 2x1 o

o1
cos ot�0

1� o2

o2
1

� �2
þ 2x1 o

o1

� �2 , (15)

d ¼
f s

m1
sgnð _x2 � _x1Þ, (16)

where o01 ¼ o1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x21

q
is the damped natural frequency of Structure-1.

The corresponding dynamic responses of Structure-2 during slip mode can be obtained using Eqs. (11)–(16)
by interchanging the subscripts 1 and 2.

The coupled system remains in the slip mode till the relative velocity in the friction damper becomes zero i.e.
_x1ðtÞ ¼ _x2ðtÞ. At this point of time, there are two possibilities depending upon the system parameters and
excitation level namely: (i) the reattachment of the two structures which is referred as stick–slip mode and (ii)
occurrence of another slip mode in which the damper starts slipping in the opposite direction immediately and
this is referred as slip–slip mode.
3. Conditions for three periodic motions

Depending upon the properties of the coupled system and excitation, the resulting harmonic response of the
system is found to be periodic consisting of three different modes i.e. stick–stick, stick–slip and slip–slip mode.
Such phenomenon had been observed in the past for various systems with sliding interface under harmonic
ground excitation [11–14]. In order to ascertain this behavior of the present system, time variation of velocities
of two structures (i.e. _x1ðtÞ and _x2ðtÞÞ is plotted in Fig. 2 for three different values of damper slip force (i.e.
f s=a0m1 ¼ 2:4, 1.4 and 0.4). The parameters of the coupled system considered are: m2=m1 ¼ 1, x1 ¼ x2 ¼ 0:02,
o1=o2 ¼ 2 and o=o1 ¼ 0:625. The figure indicates that there exists three distinct velocity response modes of
the connected structures i.e. stick–stick, stick–slip and slip–slip mode for f s=a0m1 ¼ 2:4, 1.4 and 0.4,
respectively. For relatively higher values of fs, both structures vibrate together with identical response referred
as stick–stick mode (refer Fig. 2(a)). However, with decrease in fs, the mode of vibration shifts to stick–slip
(partial stick and slip motion) or slip–slip mode (complete slip motion in one cycle) from the stick–stick mode
as shown in Fig. 2(b) and (c), respectively. Thus, there exist three types of periodic motions namely,
stick–stick, stick–slip and slip–slip motions in the harmonic response of structures connected with a friction
damper.
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Fig. 2. Velocity responses of the connected structures in the three modes (m2=m1 ¼ 1, x1 ¼ x2 ¼ 0:02, o1=o2 ¼ 2 and o=o1 ¼ 0:625).
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3.1. Condition for stick– stick mode

Consider a typical enlarged time history of the velocity response of two structures in the stick–slip mode as
shown in Fig. 3. The system is vibrating in slip mode between points A and B, while it is vibrating in stick
mode between points B and C. Let t0 and t1 denote the time for points B and C, respectively. When point B

coincides with point A, the entire mode of vibration becomes stick–stick from the stick–slip mode. Therefore,
at the initiation of slippage, we have t1 � t0 ¼ p=o. Substituting this relation in Eq. (2), we have

xcðt1Þ

_xcðt1Þ

" #
¼ Ast

p
o

� � xcðt0Þ

_xcðt0Þ

" #
þ Bst

p
o

� �
¼ �

xcðt0Þ

_xcðt0Þ

" #
. (17)



ARTICLE IN PRESS

.

.

t1t0

ρ /ω

CBA

Stick

Slip

x1
x2

Time

S
tr

uc
tu

ra
l v

el
oc

ity

Fig. 3. Typical velocity responses of connected structures in stick–slip mode.

A.V. Bhaskararao, R.S. Jangid / Journal of Sound and Vibration 292 (2006) 710–725716
Therefore, xcðt0Þ and _xcðt0Þ can now be represented as

xcðt0Þ

_xcðt0Þ

" #
¼ � Ast

p
o

� �
þ I

h i�1
Bst

p
o

� �
, (18)

where I is an identity matrix.
Substituting Eqs. (3) and (4) in the above Eq. (18), we get

xcðt0Þ

_xcðt0Þ

" #
¼

a0

o2
c

b

oa

� �
. (19)

Considering Eq. (7a), the condition for stick–stick mode at time t ¼ t0 becomes

jm1 €xcðt0Þ þm1a0 sinðot0Þ þ c1 _xcðt0Þ þ k1xcðt0Þjpf s. (20)

Using Eq. (1), the above equation can be rewritten as

j � 2xcoc _xcðt0Þ � o2
cxcðt0Þ þ 2x1o1 _xcðt0Þ þ o2

1xcðt0Þjpf s=m1. (21)

Now using Eq. (19), Eq. (21) takes the form given by

ð2x1o1 � 2xcocÞ
o
o2

c

a0a

	 

þ ðo2

1 � o2
cÞ

a0b

o2
c

	 
����
����pf s=m1. (22)

Substituting Eqs. (5) and (6) in Eq. (22) and simplifying, we get

a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

o2
1

o2
c

� �2
þ 1� o1x1

ocxc

� �2
2xc

o
oc

� �2
1� o2

o2
c

� �2
þ 2xc

o
oc

� �2
vuuuut sinðot0 � yÞ

��������

��������
pf s=m1, (23)

tan y ¼
2xc

o
oc

� �
o1x1
ocxc

o2
c�o

2

o2
c

� �
�

o2
1
�o2

o2
c

� �h i
4x2c

o2

o2
c

� �
1� o1x1

ocxc

� �
þ 1�

o2
1

o2
c

� �
1� o2

o2
c

� � . (24)
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The maximum of absolute value in Eq. (23) should be considered to yield the necessary condition for
stick–stick mode expressed by

a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

o2
1

o2
c

� �2
þ 1� o1x1

ocxc

� �2
2xc

o
oc

� �2
1� o2

o2
c

� �2
þ 2xc

o
oc

� �2
vuuuut

��������

��������
pf s=m1. (25)

3.2. Condition for initiation of slip– slip mode

The system remains in slip–slip mode when point B coincides with point C as shown in Fig. 3. Let the
slippage starts at time t�0 and continues till time t�1, we have t�1 � t�0 ¼ p=o. Substituting this into Eq. (11) and
considering the periodicity of the solution yields to

x1ðt
�
1Þ

_x1ðt
�
1Þ

" #
¼ Asl

p
o

� � x1ðt
�
0Þ

_x1ðt
�
0Þ

" #
þ Bsl

p
o

� �
¼ �

x1ðt
�
0Þ

_x1ðt
�
0Þ

" #
. (26)

Therefore, the displacement and the velocity at time t ¼ t�0 can be expressed by

x1ðt
�
0Þ

_x1ðt
�
0Þ

" #
¼ � Asl

p
o

� �
þ I

h i�1
Bsl

p
o

� �
. (27)
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Fig. 4. Variation of peak displacement response ratio of Structure-1 with excitation frequency ratio (m2=m1 ¼ 1 and x1 ¼ x2 ¼ 0:02).
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Substituting Eqs. (12) and (13) in Eq. (27) and simplifying, it leads to

x1ðt
�
0Þ ¼

a0

o2
1

b0 þ

x1ffiffiffiffiffiffiffiffi
1�x21
p sin p o0

1

o

� �
� sinh px1

o1

o

� �
cos p o0

1

o

� �
þ cosh px1

o1

o

� � f s=k1, (28)

_x1ðt
�
0Þ ¼

a0

o2
1

oa0 �

o1ffiffiffiffiffiffiffiffi
1�x21
p sin p o0

1

o

� �
cos p o0

1

o

� �
þ cosh px1

o1

o

� � f s=k1. (29)

Considering Eq. (8a), the expression for slip–slip mode at time t ¼ t�0 becomes

jm1 €x1ðt
�
0Þ þm1a0 sinðot�0Þ þ c1 _x1ðt

�
0Þ þ k1x1ðt

�
0Þj4f s. (30)

Using Eq. (1) and noting that at the initiation of slippage x1 ¼ xc, the above equation can be rewritten as

j � 2xcoc _x1ðt
�
0Þ � o2

cx1ðt
�
0Þ þ 2x1o1 _x1ðt

�
0Þ þ o2

1x1ðt
�
0Þj4f s=m1. (31)

Substituting for displacement and velocity using Eqs. (28) and (29) in Eq. (31) and simplifying using Eqs.
(14) and (15), it takes the form given by

ja0a sinðot�0 � y0Þ þ bj4f s=m1, (32)
0

10

20

30

0.4 0.8 1.2 1.6 2.0 2.4
0

10

20

30

0.4 0.8 1.2 1.6 2.0 2.4

ω1/ω2=1.25 ω1/ω2=1.5

ω1/ω2=2 ω1/ω2=2.5

ω /ω2ω /ω2

x 2
/x

2s
t

f
s
/a

0
m

1
=0.0

 0.5
 0.7
 1.0
 1.5
 2.0
 ∞

x 2
/x

2s
t

Fig. 5. Variation of peak displacement response ratio of Structure-2 with excitation frequency ratio (m2=m1 ¼ 1 and x1 ¼ x2 ¼ 0:02).
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where

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

o2
c

o2
1

� �2
þ 1� ocxc

o1x1

� �2
2x1 o

o1

� �2
1� o2

o2
1

� �2
þ 2x1 o

o1

� �2
vuuuut , (33)

tan y0 ¼
2x1 o

o1

� �
ocxc

o1x1
�

o2
c

o2
1

� �
þ 1� ocxc

o1x1

� �
2x1 o

o1

� �3
1� ocxc

o1x1

� �
4x21 � 1�

o2
c

o2
1

� �h i
o
o1

� �2
þ 1�

o2
c

o2
1

� � , (34)

b ¼
ðo2

1 � o2
cÞ sinh f� cn sin c

cosh fþ cos c
ðf s=k1Þsgnð _x2 � _x1Þ, (35)

cn ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x21

q ð2o1ocxc � x1o
2
c � x1o

2
1Þ, (36)

f ¼ px1
o1

o
, (37)

c ¼ p
o01
o

. (38)
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The maximum of absolute value in Eq. (32) yields the condition for the system to be in slip–slip mode
given by

ja0aþ bj4f s=m1. (39)

3.3. Conditions for three periodic modes

The conditions for three periodic modes to occur in the harmonic response of adjacent structures connected
with a friction damper are expressed as follows:
(a)
Table 1

Optimu

Respon

x1

x2
Stick–stick mode:

a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

o2
1

o2
c

� �2
þ 1� o1x1

ocxc

� �2
2xc

o
oc

� �2
1� o2

o2
c

� �2
þ 2xc

o
oc

� �2
vuuuut

��������

��������
pf s=m1. (40)
(b)
 Stick–slip mode:

ja0aþ bjpf s=m1o a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

o2
1

o2
c

� �2
þ 1� o1x1

ocxc

� �2
2xc

o
oc

� �2
1� o2

o2
c

� �2
þ 2xc

o
oc

� �2
vuuuut

��������

��������
. (41)
m damper slip force and percentage of reductions in the peak displacement responses of coupled structures

se m2/m1 x1 x2 Optimum fs (a0m1) Percentage response reduction

o1=o2 ¼ 1:25 1.5 2.0 2.5 o1=o2 ¼ 1:25 1.5 2.0 2.5

1 0.02 0.02 0.769 0.878 0.908 0.920 64.21 73.92 79.10 80.76

0.02 0.05 0.799 0.870 0.904 0.931 64.06 73.67 78.93 80.64

0.05 0.02 0.501 0.629 0.697 0.740 36.25 49.39 57.44 60.23

0.05 0.05 0.501 0.622 0.689 0.739 36.01 48.71 57.09 59.96

1.5 0.02 0.02 0.809 0.939 0.932 0.925 68.29 77.21 81.94 83.38

0.02 0.05 0.781 0.903 0.927 0.960 67.89 76.89 81.75 83.30

0.05 0.02 0.539 0.697 0.740 0.787 40.50 53.88 61.83 64.49

0.05 0.05 0.512 0.690 0.738 0.779 39.17 53.11 61.25 64.16

2 0.02 0.02 0.800 0.911 0.968 0.813 70.22 79.04 83.42 83.76

0.02 0.05 0.848 0.898 0.962 0.838 69.74 78.67 83.23 84.06

0.05 0.02 0.589 0.698 0.789 0.762 41.34 56.52 64.27 66.73

0.05 0.05 0.590 0.689 0.779 0.753 41.24 55.67 63.78 66.41

1 0.02 0.02 0.873 0.972 0.930 0.891 77.78 89.78 95.96 97.77

0.02 0.05 0.640 0.842 0.872 0.860 56.10 77.32 90.45 94.65

0.05 0.02 0.898 0.959 0.923 0.886 77.93 89.67 95.90 97.75

0.05 0.05 0.672 0.832 0.866 0.848 56.08 77.02 90.29 94.54

1.5 0.02 0.02 1.271 1.361 1.378 1.344 74.26 87.94 95.33 97.75

0.02 0.05 0.923 1.160 1.270 1.290 51.30 73.92 89.05 93.92

0.05 0.02 1.251 1.390 1.350 1.350 74.56 87.87 94.90 97.40

0.05 0.05 0.905 1.190 1.259 1.297 51.28 73.73 89.02 93.76

2 0.02 0.02 1.487 1.895 1.805 1.820 70.96 86.19 94.74 97.04

0.02 0.05 1.047 1.569 1.661 1.739 47.19 70.85 87.80 92.94

0.05 0.02 1.510 1.881 1.779 1.848 71.21 86.18 94.63 96.94

0.05 0.05 1.052 1.560 1.641 1.769 47.14 70.71 87.53 92.72
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Slip–slip mode:
(c)
ja0aþ bj4f s=m1. (42)
4. Parametric study

In this section, a detailed parametric study is conducted to investigate the influence of system parameters on
the harmonic response of structures connected with friction damper. The important parameters considered are
frequency ratio (o1/o2), mass ratio (m2/m1), damping ratios of the two structures (x1 and x2), slip force (fs),
and excitation frequency (o). The above structural parameters are varied by changing the properties of
Structure-2 but keeping the same properties of Structure-1. The response quantities of interest are the
displacement of adjacent structures (i.e. x1 and x2) relative to the ground and the displacement in the friction
damper. The relative displacement of structures is important, as the stresses in the structural members are
directly proportional to it. On the other hand, the displacement in friction damper is crucial from design point
of view. In addition, the optimum value of slip force in the friction damper for minimum displacement
response of connected structures is also investigated. The results of the parametric study are presented in non-
dimensional form. The displacement responses of the two structures are normalized with their corresponding
static displacements i.e. x1st and x2st. The maximum displacement in the damper is expressed as a
dimensionless parameter by multiplying with either o2

c=a0 or o2
1=a0.

In order to study the effects of slip force, the variation of peak relative displacement of the Structure-1
(stiffer) is plotted in Fig. 4 against the excitation frequency for various values of fs (i.e. varying from zero to
infinity). The zero value of fs implies that the two structures are without friction damper. On the other hand,
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Fig. 7. Effects of slip force on maximum displacement in the damper (m2=m1 ¼ 1 and x1 ¼ x2 ¼ 0:02).
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infinite value of fs implies that the two structures are connected with a rigid link. It is observed from Fig. 4 that
the peak displacement of the Structure-1 reduces up to a certain increase in the value of fs for all values of
o1=o2 ratios. However, with further increase in the fs, the peak displacement of the structure increases. For
higher values of the fs, the peak response of the structure becomes more than that without any damper
(compare the response for fs equal to 0 andN). This shows that there exists an optimum value of slip force for
which the peak displacement of the structure attains the minimum value. At optimum value of the slip force,
there is significant reduction in the peak response of the structure implying that the friction damper is very
effective in controlling the dynamic response of connected structures. The similar effects of slip force of the
damper are depicted in Fig. 5 showing the corresponding peak harmonic displacement of Structure-2.

The variations of the peak displacements of two structures are shown in Fig. 6 against damper slip force for
different values of mass ratios (i.e. m2=m1 ¼ 1 and 1.5) and frequency ratios (o1=o2 ¼ 1:25, 1.5, 2 and 2.5). As
observed earlier, there exists an optimum value of damper slip force for minimum displacement of connected
structures. The optimum slip force marginally increases with the increase of frequency ratio, o1=o2 for both
structures. The peak displacement of the structures decreases with the increase of the frequency ratio, o1=o2.
This implies that the friction damper performs better when frequencies of the connected structures are well
separated. This is expected due to the fact that when frequencies are well separated, the adjacent structures
vibrate out of phase causing large displacements in the damper thereby dissipation of large input energy
through friction and subsequent reduction in the dynamic response of the system.

In Table 1, the optimum slip force and corresponding displacement reduction of two adjacent structures are
shown for different combinations of parameters x1; x2, o1=o2 and m2=m1. The various observations made
from the Table 1 are: (i) the optimum slip force is different for each of the two connected structures, (ii) the
optimum slip force and corresponding reduction in the response for a structure depends on its own damping
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ratio rather than the damping ratio of adjacent structure, (iii) the optimum slip force increases marginally with
the increase of frequency ratio, (iv) the optimum slip force of a structure increases with the increase of its mass
provided the other parameters held constant and (v) the reduction in response increases with the increase of
frequency ratio and it is higher for softer structure as compared to stiffer structure.

The effects of slip force on the absolute maximum displacement in the damper, xd ¼ jðx2 � x1Þjmax is shown
in Figs. 7 and 8 for m2=m1 ¼ 1 and 1.5, respectively. The results are shown for various frequency ratios and
considering damping ratio in both structures as 0.02. It is observed that as the slip force increases (i.e. the
damper becomes more stiff) the damper displacement decreases. The maximum value of damper displacement
occurs when excitation frequency is in the vicinity of three natural frequencies (i.e. o1; o2 and ocÞ depending
upon the magnitude of the slip force. For low values of slip force, the peak damper displacement occurs when
the system is excited to the frequency of the softer building (o2). However, for higher values of the slip force
the maximum damper displacement occur in the vicinity of combined frequency (oc). The peak displacement
of damper with low slip force increases with increase of frequency ratio. On the other hand, opposite trend is
observed for damper with higher slip force.

The effect of damping ratios of coupled structures on the damper displacement is shown in Fig. 9 by
considering four sets of structure damping ratios. It is seen from Fig. 9 that the maximum damper
displacement reduces significantly with the increase of the damping of softer structure. The damper
displacement is not much sensitive to level of damping in stiffer structure in the range of parameters for
practical applications. Thus, the damping of softer structure has significant influence on the maximum
displacement in damper. The effect of mass ratio on the damper displacement is shown in Fig. 10. It is
observed that the damper displacement increases with increase of the mass ratio. This may be due to the
reason that higher mass ratio changes the dynamic characteristics and response of two connected structure
which causes higher damper displacement.



ARTICLE IN PRESS

0

20

40

60

80

0

20

40

60

80

0.3 0.6 0.9 1.2
0

20

40

60

80

0.3 0.6 0.9 1.2

fs /a0m1 fs /a0m1

fs /a0m1

=0.4 =0.5m2 /m1=1
 1.5
2

=0.6 =0.7

=1

ω
12

x d 
/ a

0
ω

12
x d 

/ a
0

ω
12

x d 
/ a

0

=1.5

fs /a0m1

fs /a0m1
fs /a0m1

ω /ωc ω /ωc

Fig. 10. Effects of mass ratio on maximum displacement in the damper (x1 ¼ x2 ¼ 0:02, and o1=o2 ¼ 2).

A.V. Bhaskararao, R.S. Jangid / Journal of Sound and Vibration 292 (2006) 710–725724
5. Conclusions

The dynamic behavior of two adjacent structures connected with friction damper is investigated under
harmonic ground excitation. The governing equations of motion of the coupled system are derived and solved
for finding out responses during non-slip and slip phases of friction damper. The explicit expressions for
conditions of various modes of the periodic response of connected structures are derived. From the trends of
the results of the present study, the following conclusions may be drawn:
1.
 There exist three types of periodic motion, namely stick–stick, stick–slip and slip–slip motions in the
harmonic response of adjacent structures connected with friction damper.
2.
 The friction damper is found to be effective in reducing the dynamic response of connected structures. The
friction dampers are more effective when the natural frequencies of the connected structures are well
separated.
3.
 The friction damper is found to be more beneficial for softer structure in comparison to the stiff structure of
the combined system.
4.
 There exists an optimum slip force in the damper for which the peak displacement of a structure attains the
minimum value. The optimum slip force is different for each of the two connected structures.
5.
 The optimum slip force and percentage reduction in the displacement of a structure depend on its own
damping ratio rather than damping in the adjacent structure.
6.
 The maximum displacement in friction damper reduces as the slip force increases and it also increases with
the increase in the mass ratio of the connected structures. The damper displacement significantly decreases
with increase of damping in the softer structure.
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